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EXAMPLE

W =z*  (complex conjugate)

U=x V=-—y
au av
=41 —=-1
ax * ay

3. Integration. The integral

[ 1(2) dz

is a line integral which depends in general on the path followed from z, to
z, (Figure A-7). However, the integral will be the same for two paths if
f(2) is regular in the region bounded by the paths. An equivalent statement
is Cauchy’s theorem:

3€c f(z2)dz =0 (A-9)

if C is any closed path lying within a region in which f(z) is regular.
A kind of converse is also true; if §¢ f(z) dz =0 for every closed path C
within aregion R, where f(z) is continuous and single valued, then f(z) is
regular in R.

4. If f(z) is regular in a region, its derivatives of all orders exist and are
regular there.

5. If f(z) is regular in a region R, the value of f(z) at any point within R may
be expressed by Cauchy’s integral formula

5
=L [ L

2nide {—z

(A-10)

where C is any closed path within R encircling z once in the counterclockwise
direction. This formula follows directly from the theorem of residues,

Figure A-7 Paths of integration in the complex plane
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item 8 below. The remarkable property of analytic functions implied by
Eq. (A-10) should be noted. The values of an analytic function throughout a
region are completely determined by the values of the function on the bound-
ary of that region. See Section 5-2 for an application of this property.
Cauchy’s formula may be differentiated any number of times to obtain

f@de
A )_2mfc(¢—z)~
: f© dg
f”&)—sz{g e (A-11)

6. A power series expansion {Taylor’s series) is possible about any point z,
within a region where f(z) is regular:

f(@)=ap+a(z - Zo) + ax(z — 20)2 +
Go= 1) ay = [z (A-12)

The region of the z-plane in which the series converges is a circle. This
circle of convergence extends to the nearest singularity of f(z), that is, to the
nearest point where f(z) is not analytic.

The converse is also true. Any power series convergent within a circle R
represents a regular function there.

7. The Laurent expansion. If f(z) is regular in an annular region between
two concentric circles with center z,, then f(z) may be.represented within this
region by a Laurent expansion

o0

f(2) = E a,(z — zo)"

n=—

where the coefficients a, are

gl g Sods (A-13)

2nite(z — zp)"!

C is any closed path encircling z, counterclockwise within the annular region.
Note that the coefficient a_, is

ﬁﬂn& (A-14)

—1
Zru

If f(2) is regular in the annulus, no matter how small we make the inner
circle, and yet f(z) is not regular throughout the larger circle, we say that z,
is an isolated singularity of f(z). For such an isolated singularity, there are
three possibilities:
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(@) The Laurent series for f(z) may contain no terms with negative powers
of (z — z,). Thisisatrivial case, and is called a removable singularity.
By redefining f(z) at the point z = z,, the singularity may be removed.
For example, the function
z |z|] >0
f(Z) - Il 7= 0
has a removable singularity at z = 0.

(b) The Laurent series for f(z) may contain a finite number of terms with
negative powers of (z — z,). In this case z, is called a pole of order m,
where —m is the lowest power of (z — z,) appearing in the Laurent
series. For example, the function f(z) = (1/sin z)? has poles of order
twoatz=0, +n, +2n,.... Iff(z) has a pole of order m at z,, the
function (z — z,)"f(z) is regular in the neighborhood of z,.

(¢) The Laurent series for f(z) may contain infinitely many terms with
negative powers of (z — zy). In this case, f(z) is said to have an
essential singularity at z =z,. For example, e'/* has an essential
singularity at z =0 (and therefore e* has an essential singularity at
z = o).

If z, is an isolated singularity, the coefficient a_, in the Laurent expansion
is called the residue of f(z) at z,. It has special importance, because of the
relation (A-14), as will now be discussed.

8. The theorem of residues allows us to evaluate easily the integral of a
function f(z) along a closed path C such that f(z) is regular in the region
bounded by C except for a finite number of poles and (isolated) essential
singularities in the interior of C. By Cauchy’s theorem, the path, or contour,
C may be deformed without crossing any singularities until it is reduced to
little circles surrounding each singular point. The integral around each little
circle is then given by (A-14), so that we have the theorem of residues

f f(z) dz = 27i Y residues (A-15)
C

where the sum is over all the poles and essential singularities inside C. This
theorem is of enormous practical importance in the evaluation of integrals,
and a number of examples of its application are given in Section 3-3.

What if a pole lies on the contour? The first thing to do is to look into the
physics of the problem to see if this awkward location of the pole results from
some approximation. If so, one can decide on which side of the path the
pole really lies and thus see whether its residue should be included or not.

A mathematical integral with a pole on the contour strictly does not exist,
but, for a simple pole on the real axis, one defines the Cauchy principal valie as

Bl L i eré 1) dx+f J(x) dx] (A-16)

a X — Xp 5—0 a X — Xg ot+d X — Xg

where d is positive.
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The path for the Cauchy principal value integral can form part of a closed
contour in which the ends x,, + J are joined by a small semicircle centered at
the pole (see Figure A-8). Along this semicircle the integral is easy to
evaluate; if we let the radius approach zero, f(z) = a_,(z — x5) "', Let

z—xo=ré"  dz=ire® 4o
Then

f@)dz— ~ [ a_,idf= —nia_,
~0

Jaicmicirr_'[c

and if, as is usually the case, the large semicircle gives no contribution,

ff f(z)dz="P |ﬂf(z) dz — mi(residue at z,)
c J

= 27i(}_ residues inside C)
This gives the result

P ff(z) dz = 2ri(} residue at x, + ¥ residues inside C) (A-17)

Thus the Cauchy principal value is the average of the two results obtained
with the pole inside and outside of the contour.

We often have an integral along the real axis with a simple pole just
above (or just below) the axis at x,. We may consider the pole to be on
the axis if we make the path of integration miss the pole by going around
Xo on a little semicircle below (or above). Then it follows by reasoning
similar to that leading to (A-17) that the integral may be expressed in terms of
the Cauchy principal value as follows:

[ f(x)

J X —xy Fie

dx=p [ LX)
Jx—xo

dx + inf(xg)
We may express this result in the somewhat symbolic form

1 1
=P + im 8(x — x,) (A-18)

X —xo Fie X — X,

where 6(x — x,) is the Dirac delta-function defined in (4-19).

O N -, I

rAl

*o

Figure A-8 Illustration of a pole on the real axis
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9. The identity theorem states that if two functions are each regular
in a region R, and have the same values for all points within some subregion
or for all points along an arc of some curve within R, or even for a denumer-
ably infinite number of points having a limit point within R, then the two
functions are identical everywhere in the region. For example, if f(z) =0
all along some arc in R, then f(z) is the regular function O everywhere
in R.

This theorem is useful in extending into the complex plane functions defined
on the real axis. For example,

1
T - 2
e —1+z+2!z -

Is the unique function f(z) which is equal to €* on the real axis.

10. Consider a function f(z) which is analytic in a region R of the complex
plane, and assume that a finite part of the real axis is included in R. If the
function f(z) assumes only real values on that part of the real axis in R, then
it can be shown that f(z*) = [f(2)]* throughout R. That is, going from a
point z to its “image” in the real axis, namely, z*, just carries the value f of
the function over into its image f*. This is known as the Schwartz reflection
principle.

The identity theorem forms the basis for the procedure of analytic continua-
fion. A power series about z, represents a regular function f}(z) within its circle
of convergence, which extends to the nearest singularity. If an expansion of
this function is made about a new point z,, the resulting series will converge
in a circle which may extend beyond the circle of convergence of f;(z). The
values of f3(z) in the extended region are uniquely determined by f,(z)—in
fact, by the values of £;(z) in the common region of convergence of f;(z) and
/2(2).  f3(2) is said to be the analytic continuation of f1(2) into the new region.
This process may be repeated (with limitations mentioned below) until the

entire plane is covered except for singular points by these elements of a single
function F(z).

EXAMPLE

fi@=14+z+22423+...
converges in a circle of radius 1 to

1
11—z

F(z) =

But F(2) is analytic everywhere except at the simple pole z = 1, and no other
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function analytic outside |z| = 1 can coincide with fi(z) within |z] < 1. F(2) is
the unique analytic continuation of £(z) into the entire plane.

Not all functions can be continued indefinitely. The extension may be
blocked by a barrier of singularities.

It may also happen that the function F(z) obtained by continuation is
multivalued. For example, suppose that after repeating the process described
above a number of times, the nth circle of convergence partially overlaps the
first one. Then the values of the element £,(z) in the common region may or
may not agree with fi(z). If they do not agree, then the function F(z) is
multivalued, and the *path” along which the continuation was made has
encircled one or more branch points,

A power series which converges everywhere defines a single-valued analytic
function with no singularities in the entire plane (excluding o). Such a
function is called an entire function. Examples are polynomials, e*, and
sinz.. A single-valued function which has no singularities other than poles in
the entire plane (excluding o) is called a meromorphic function. Examples
are rational functions, that is, ratios of polynomials.

We conclude by mentioning Liouville’s theorem; if the function f(z) is
regular everywhere in the z-plane, including the point at infinity, then £(z) is a
constant.

REFERENCES

A very nice treatment of the theory of functions of a complex variable may
be found in the two small volumes by Knopp (K4). This subject is treated in
many other books, for example, Copson (C8); Whittaker and Watson (W5);
Apostol (A5); Nehari (N2); and Titchmarsh (T4).

PROBLEMS

A-1 Describe the mapping produced by the function

1
W ==
< VE 1)z -2)
A-2 Describe the mapping produced by the function

1
Vi-1-1/2

W(z) =

A-3  Which of the following are analytic functions of the complex variable z?
(@ |z
(b) Re z

(C) esin z




; arguments are the evaluation

af-b

s pob e ird (3-27)

r which is linear in both a and b.
here A is a number. To find 4,

4n

[ il e p—
;|a‘Qcos 0= 3

Since @, is a scalar, linear in
invariant under any interchange

+a+db-c)
a=b=c=d=2%,s0 that
4n
‘=Idﬂcos“ Shags
‘cb'd+a-db-c)

me can use to simplify integrals,

(3-28)

- )]
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R
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Use of (3-28) converts (3-29) to
L dQ
= Ld" I{x ke + 11— w])°

The solid-angle integral in (3-30) is just I,[kw + 1(1 — u)], as given by
(3-19). Thus

(3-30)

du
—ku +1(1 — )]

This is an elementary integral, although rather tedious; the answer has the
interesting form

1
vk, 1) = 4n J'O :

4 L, A4
w(k, l) = \/_A— TBZ cosh 'B (3-31)
where
A=1-k-1

B=J(1-k5(1-1

The proof of (3-31) is left as an exercise (Problem 3-37).

3-3 CONTOUR INTEGRATION

One of the most powerful means for evaluating definite integrals is provided
by the theorem of residues from the theory of functions of a complex vari-
able. We shall illustrate this method of contour integration by a number of
examples in this section. Before reading this material, the student who does
not know the theory of functions of a complex variable reasonably well
should review (or learn) certain parts of this theory. These parts are pre-
sented in the Appendix of this book to serve as an aid in the review (or as a
guide to the study).

The theorem of residues [Appendix, Eq. (A-15)] tells us that if a function
f(2) is regular in the region bounded by a closed path C, except for a finite
number of poles and isolated essential singularities in the interior of C,
then the integral of f(z) along the contour C is

[ 1) dz = 2xi ¥ residues
C

where ) residues means the sum of the residues at all the poles and essential

singularities inside C.

. The residues at poles and isolated essential singularities may be found
as follows.




66 Evaluation of Integrals

If f(z) hasa simple pole (pole or order one) at z = z,, the residue is

a_y = [z — 20/ (D)e=z (3-32)

If f(z) is written in the form f(z) = 9(2)/p(2), where ¢(z) is regular and p(2)
has a simple zero at z, the residue of f(z) at z, may be computed from

a_ = q—,‘ (3-33)
D |z=z0
If z, is a pole of order n, the residue is

: {(i)“_l[(z RPRELS)) (3-34)

="
17 (n =1 \\dz 2o

If z, is an isolated essential singularity, the residue is found from the

Laurent expansion (Appendix, Section A-2, item 7).
We illustrate the method of contour integration by some examples.

EXAMPLE

© dx

Consider § dz/(1 + z%) along the contour of Figure 3-1. Along the real
axis the integral is 2I. Along the large semicircle in the upper-half plane

we get zero, since

. . 1 e—li@
z = Re®® dz = iRe" do SN —
1+z R
dz i 2
1+22:~.§ e ®df—>0as R—
z-plane
R—
x+1
i
*—1

Figure 3-1 Contour for the integral (3-35)
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The residue of 1/(1 + 2z%) = 1/(z + i)(z — i) at z =i is 1/(2i). Thus

1 7
2l =27il—) == ==
(21‘) 2
Note that an important part of the problem may be choosing the *‘return
path” so that the contribution from it is simple (preferably zero).

EXAMPLE

Consider a resistance R and inductance L connected in series with a
voltage V(f) (Figure 3-2). Suppose F(f) is a voltage impulse, that is, a
very high pulse lasting for a very short time. As we shall see in Chapter 4,
we can write to a good approximation

Figure 3-2 Series R-L circuit

where A is the area under the curve F(¢).
The current due to a voltage ™" is e*"/(R + iwL). Thus the current due
to our voltage pulse is
A ® édo
=22 ) R ioL (336
Let us evaluate this integral.

If t <0, the integrand is exponentially small for Im w — — o0, so that we
may complete the contour by a large semicircle in the lower-half w-plane,
along which the integral vanishes.®> The contour encloses no singularities,
so that I(t) = 0.

If t > 0, we must complete the contour by a large semicircle in the upper-

half plane. Then
ANe L o
I(t) = 2mi| — = _ ¢ RiIL
® m(Zn) iL L

3 A rigorous justification of this procedure is provided by Jordan's lemma; see Copson
(C8) p. 137 for example.
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EXAMPLE

@ dx

o 14x°

(3-37)

The integrand is not even, so we cannot extend it to —oo. Consider the
integral

Inzdz

1+ 23

The integrand is many-valued; we may cut the plane as shown in Figure 3-3,
and define In z real (=In x) just above the cut. Then Inz=Inx+ 2ni
below the cut, and integrating along the indicated contour,
Inzd:z y
$ —s = —2nil
J 14z

On the other hand, using the method of residues,

Inzdz 4;:2;'\,..-"3
1+2z 9

Thus I = (2n,/ 3)/9.

When integrating around a branch point, as in this example, it is necessary
to show that the integral on a vanishingly small circle around the branch
point is zero. In this example, this part goes like r In r, which approaches
zero as r — 0.

z-plane
R —
X
e
X

Figure 3-3 Contour for the integral (3-37)




